Complex bases: 13. Salt complex bases as new initiators in anionic polymerization of vinyl monomers

S. Raynal and S. Lecolier

Centre de Recherche du Bouchet, Société Nationale des Poudres et Explosifs 91710 Vert le Petit, France

and G. Ndebeka and P. Caubere

Laboratoire de Chimie Organique I, Era CNRS no 476, Université de Nancy I Case Officielle 140, 54037 Nancy Cédex, France (Received 2 February 1981)

Inorganic salts have been used as activating agents of alkali amides, which led to salt complex bases MNH₂-M'Z. Salt complex bases or solid salt complex bases constitute good initiators for solution and bulk anionic polymerization of vinyl monomers. The influence of the nature of the activating agent and of the solvent used has been examined. Finally the polymers thus formed appear to be living ones.

Keywords Polymerization; initiation; activation; salts; complex

INTRODUCTION

Since our earlier work concerning the activation of sodamide by sodium alkoxides or sodium enolates¹⁻³ (complex bases abbreviated here CB) Biehl and co-workers^{4.5} have observed the same type of phenomenon with inorganic sodium salts such as NaSCN or NaNO₂. In a comparative study of alkoxides, enolates and inorganic salts as activating agents we subsequently established that, in general, inorganic salts had lower activating properties³.

However, we primarily established in previous publications that CB constituted good initiators for polymerization of vinyl monomers⁶⁻⁹. Thus we decided to further study the activation of NaNH₂ and KNH₂ by inorganic salts and to determine whether the best of them (called salt complex bases and abbreviated SaCB) could be used as initiators in polymerization of vinyl monomers.

EXPERIMENTAL

Materials

Degussa broken sodamide was washed several times with the solvent of the reaction and ground in a mortar under the same solvent. Fluka lithium amide was used as such. Potassium amide was prepared from potassium metal and liquid ammonia according to reference 11.

Badisch Anilin reagent grade THF was distilled from sodium or benzophenone-sodium couple before use. Reagent grade DME (Fluka), toluene and thiophene free benzene (Pursan) were refluxed on sodium metal, then distilled and kept on sodium wires. Salts were commercial grade (Fluka, Prolabo).

The monomers were distilled on calcium hydride under argon or high vacuum.

General

Infra-red spectra were recorded with a Perkin-Elmer 457 spectrometer. The molecular weights are determined

by v.p.o. $(\overline{M_n})$ Knauer instrument and by g.p.c. $(\overline{M_n}, \overline{M_w})$ with a Waters 200 instrument.

All reactions were performed under nitrogen R or argon U.

General procedure

Relative ratios of reagents and reaction conditions are given in the Results and Discussion section.

Salt complex base preparations. The salt was added to a suspension of the alkali amide in the chosen solvent at room temperature. The mixture was then heated for 2 h at $45^{\circ}-50^{\circ}$ C. In the case of solid salt complex bases prepared without solvent the salt was added to the ground alkali amide at room temperature. The mixture was then heated for 2 h at $45^{\circ}-50^{\circ}$ C with stirring.

With the solid salt complex bases prepared in a solvent the experimental technique used was the same as the one with the salt complex bases in solution. After the formation of the salt complex bases the solvent was evaporated under vacuum at room temperature.

Polymerization procedure

In the same reactor used for the preparation of salt complex bases the polymerizations were carried out under nitrogen or argon. After stirring to polymerization temperature the monomer was introduced under stirring with a hypodermic syringe. The polymerization was stopped by adding a small amount of methanol, the polymer was precipitated by pouring the reaction mixture into a large excess of methanol except for 2-vinyl pyridine in cyclohexane.

In the study of NaNH₂/Activating agent ratio (*Figure 1*) the polymerizations were carried out with 88 mM of monomer at 45° C in solution and 40° C in bulk. The polymerization times were 6 h in 40 ml THF and 8 h in 40 ml toluene. In bulk polymerization, time was 1 h.

The experiments showing the influence of monomer concentration (*Figure 2*) were performed at 50° C in 40 ml

Complex bases in polymerization of vinyl monomers: S. Raynal et al.

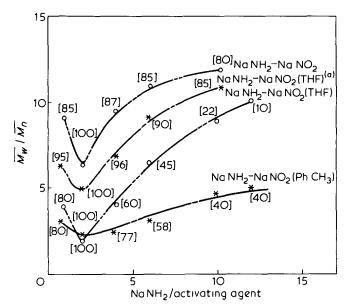


Figure 1 Polymerization of styrene by salt complex bases: Influence of NaNH₂/activating agent ratio [% Yield]; (a) solvent for solid salt complex bases preparation

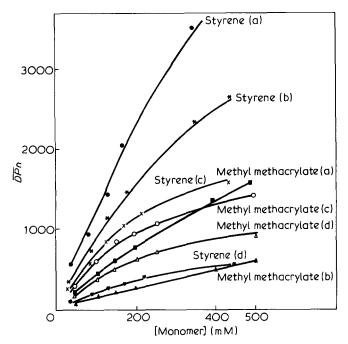


Figure 2 Polymerization of styrene and methyl methacrylate by salt complex bases: Influence of monomer concentration; (a) polymerization in toluene; (b) polymerization in THF; (c) bulk polymerization: solid salt complex bases prepared without solvent; (d) bulk polymerization: solid salt complex bases prepared in THF

of solvent with styrene, at 40° C in 40 ml of solvent with methyl methacrylate and at 30° C in bulk polymerization. The polymerization times were 6 h in THF, 8 h in toluene with styrene, 2 h with methyl methacrylate and 1 h in bulk polymerization.

The operative conditions for the other experiments are reported in the tables.

RESULTS AND DISCUSSION

Although complex bases are not very soluble in organic solvents, we found^{8,9} that solution and bulk polymerizations led to different results. Therefore, in spite

Table 1 Polymerization of styrene by salt complex bases MNH $_2$ (16.7 mM) $-$ ZM	rization of st	tyrene by s	alt comple	ex bases M	INH ₂ (16.7	mM)—ZM	(8.3 mM)											
Amides				LiNH ₂					NaNH ₂	H ₂					KN	KNH2		
Solvent (ml)		THF (40)			PhCH ₃ (30)			THF (40)			PhCH ₃ (30)			THF (40)		ш	PhCH ₃ (30)	
Activating agent (ZM)	Yield (%)	М _п а	М _w а	Yield (%)	\bar{M}_{n}^{a}	Мw ^a	Yield (%)	М _п а	Йw ^в	Yield (%)	М _п а	Йw ^a	Yield (%)	м _n a	мwa	Yield (%)	М _п а	М _w a
NaNO ₂	26	22 200	71 050	20	24 400	82950	100	75700	151 500	100	95600	210 300	100	14500	37 700	100	21 200	40 300
NaSCN	24	19700	68950	15	16200	56700	10 10	70 000	140 000	<u>8</u>	82000	180 400	8	13700	32900	8	20 000	44 000
NaCNO	14	10700	43900	10	8850	33 350	95	63800	153 100	06	69 600	174 000	100	10800	27 000	8	16600	44 800
NaCN	10	7 450	32800	ъ	4 250	19550	6	60100	162 200	85	61400	147 400	90	0066	27 700	90	15300	47 450
KNO	35	8 750	24500	29	11600	31300	100	20700	43 500	100	31500	63 000	75	6750	11 500	100	14 000	23 800
KSCN	300	6750	20900	25	8750	25400	<u>8</u>	20 000	34 000	10 10	30100	69 200	2	6100	11000	8	13500	25 650
KCNO	25	4400	14900	18	5400	17800	100	15300	33 700	100	25800	69 700	6	6500	13000	<u>8</u>	11400	29 650
KCN	25	3 750	12 000	10	2800	8700	100	14 000	28 000	100	24600	54 100	95	6450	12250	100	10100	23 200
^a Measured by g.p.c. at 30°C in THF Styrene: 88 mM, temperature 40°C, polymerization time 4 h in THF, 8 h in tol	p.c. at 30°C M, temperatu	in THF ire 40°C, F	olymeriza	ation time	4 h in THF	, 8 h in tol	luene											

Table 2 Polymerization of styrene (88 mM) by salt complex bases
NaNH ₂ (16.7 mM)NaNO ₂ (8.3 mM) at 40°C during 4 h

Solvent			ī. a	₩ _w / M _n ª
(40 ml)	Yield (%)	<i>™</i> n ^a	₩w ^a	
THE	100	75 700	151 500	1.3
DME	100	85 000	110 500	1.3
Diglyme	100	123 000	221 400	1.8
Toluene	45	55 600	122 300	2.2
Benzene	40	41 300	95 000	2.3
Cyclohexane	8	10 000	51 000	5.1

^a Measured by g.p.c. at 30°C in THF

of the fact that salt complex bases were generally of poor solubility in usual organic solvent, we decided to examine both kinds of polymerization. We shall see later that here, too, different results were obtained.

Initially we studied the possible polymerization of styrene by numerous mixtures of alkaliamides with inorganic salts. In *Table 1* we have reported only the best results obtained. The polymerization experiments in solution as well as in bulk, performed with styrene with one of the best initiator agents NaNH₂-NaNO₂, showed (*Figure 1*) that the most powerful initiator was obtained when the ratio value NaNH₂/NaNO₂ was 2. That is the same ratio as that obtained for complex bases⁸ and solid complex bases⁹.

It is necessary to add a few comments to the results in *Table 1*. As far as the activating power is concerned, it appears that whatever the cation may be, counteranions of the activating part of the salt complex bases can be classified as follows:

$$NO_{7} \ge SCN^{-} > OCN \ge CN$$

The dispersity of the polymer is rather low considering the heterogeneity of the medium used. Moreover there are no large differences between solution and bulk polymerizations in contrast to what was observed with complex bases⁸ and solid complex bases⁹.

However, we have verified that, except for KNH_2 , neither alkali amide nor alkali salts taken separately were able to initiate styrene polymerization. It is not usual that mixtures of such compounds, which are generally of low solubility in organic solvents, lead to activated initiators.

It is significant that MNH_2 activated by inorganic salt M'X generally leads to results similar to those obtained from M'NH₂ activated by MX (see *Table 1*). Thus it appears that aggregates must be formed so as to lead to actual exchanges of anions and cations and formation of new species. These observations confirm the generality of our concept concerning activation of reactivity of bases and, more generally, of salts A^-M^+ by another B^-M^{+3} .

Table 3 Polymerization of viny! monomers by salt complex bases NaNH₂ (16.7 mM)–ZNa (8.3 mM)

Note that experiments not reported here, showed that a simple mixture of MNH_2 with an activating inorganic salt without solvent led to an initiator of styrene polymerization at 40°C. Moreover, a period of initiation was needed before the slow start of polymerization. This time certainly corresponds to the formation of the active aggregates. Apparently the low solubility in monomer was sufficient for the bases to be activated.

Taking into account these later observations we decided to study briefly the influence of the solvent on the polymerization in solution. The results obtained are shown in *Table 2*. It clearly appears that polar solvents

				й	Solution polymerization	lymerizatic	no						Bulk polyı	Bulk polymerization			
Solvent (ml)	(ml)		HT	THF (40)			hh	PhCH ₃ (30)			ЧH	тнғ (g)			I		
Monomer (mM)	Activating agent N	JaNO ₂	NaNO ₂ NaSCN NaCNO NaCN	NaCNO		NaNO ₂	NaSCN	NaCNO NaCN	NaCN	NaNO ₂	NaSCN NaCNO NaCN	NaCNO		NaNO ₂ NaSCN NaCNO	NaSCN	NaCNO	NaCN
2VP (80) <i>c</i>	Yield (%) M _n a	60 4900	55 3600	40 2 000	47 2 400	50 4 600	52 3900	50 2 800	30 1 700	50 55 000	55 55 000	40 36 000	35 29 800	55 88 000	45 54 000	35 33 300	45 38 700
MMA (100) d	Yield (%) <u>Mn</u> a <u>Mw</u> a Mw/Mna	100 43 500 56 500 1.3	100 22000 46200 2.1	96 19200 48000 2.5	90 16200 38900 2.4	100 41 000 195 600 4.8	100 19 000 87 000 4.6	90 15300 62800 4.1	85 12800 71400 5.6	70 63 000 151 200 2.4	65 53 900 1 40 300 2.6	75 51 000 158 100 3.1	55 34 100 143 200 4.2	60 72 000 172 800 2.4	75 66 000 191 400 2.9	55 38 500 134 800 3.5	60 40 800 195 900 4 .8
MAN (80) ^e	$\frac{\gamma}{M_n}b$ 2	100 20 000	75 11 250	63 8 500	50 6 500	100 95 19 500 10 000	95 10 000	74 6800	57 4 800	85 63 800	80 50 400	75 34 500	60 28 200	85 72 300	87 56 600	80 42 000	75 37 500
An (80) <i>f</i>	Yield (%) M _n b	100 6 300	100 4 200	70 2 800	65 2 300	90 4 000	70 2 500	60 2100	50 1 400	90 52 000	95 36 100	80 27 200	75 24 800	80 49 600	85 34 000	80 32 000	60 21 000
^a Measured by g p c at 30°C in THF ^b Measured by v p o at 130°C in DN ^c Solution polymerization temperatu polymerization time 4 h, bulk polymerization ti temperature 45°C, polymerization ti	Measured by g p c at 30°C in THF Measured by v p o at 130°C in DMF Solution polymerization temperature 40°C, polymerization time 4 h, bulk polymerization temperature 45°C, polymerization time 2 h		 ^d Solution 35°C, po 8 Solution Polymeria temperati 	Solution and bulk polymerizatio 35°C, polymerization time 2 h Solution polymerization tempei polymerization time 20 min, bul temperature 45°C, polymerizatio		on temperature rature 35°C, Ik polymerization on time 30 min	lure ation nin	<pre> f Solu poly temp g Solv </pre>	ttion polyme merization ti berature 45° ent of comp	⁶ Solution polymerization temperature 40°C, polymerization time 30 min, bulk polymerization temperature 45°C, polymerization time 30 min ⁹ Solvent of complex bases preparation	perature 40 bulk polym ation time 3 eparation	°C, erization X0 min					

Table 4 Copolymerization styrene—methyl methacrylate by salt complex base NaNH₂ (16.7 mM)—NaNO₂ (8.3 mM) prepared in THF at -30° C

	Solu polymer		Bul polyme	
	\overline{M}_n (th.)	<i></i> Мn ^а	<i>M</i> _n (th.)	<i>™n</i> ª
Sequence polystyrene Sequence poly-MMA Copolymer	42500 <i>b</i> 20000 62500	42 500 16 300 58 800	13 400 ^b 32 600 46 000	13400 17500 30900

^a Measured by g.p.c.<u>at</u> 30°C in THF

^b Determined from \overline{M}_n measured. The difference observed between \overline{M}_n (th.) and \overline{M}_n (measured), in the case of copolymer, is likely to appear mainly because of the incomplete reaction of the sequence polymethyl methacrylate

gave the best results. Keeping those results in mind, we tried to extend the reaction performed to other vinyl monomers. The results obtained are summarized in *Table* 3. They demonstrate the general character of the initiating agents of salt complex bases. Moreover the low dispersity obtained with methyl methacrylate is particularly remarkable for anionic polymerization.

Finally experiments were conducted in order to determine the nature of the propagating species. Thus in *Figure 2* we have reported the variation of \overline{DPn} (degree of polymerization) against monomer concentration in solution and bulk polymerization. It clearly appears that linear correlations occur at low concentrations showing the living nature of the polymer¹⁰. This property was confirmed by performing block copolymers between styrene and methyl methacrylate (*Table 4*).

Note that examination of i.r. spectra of a polystyrene oligomer prepared by the salt complex base $NaNH_{2}^{-}$ NaNO₂ in THF, showed absorption a 1610 cm⁻¹ indicating the presence of a NH₂ group on the polymer.

Potentiometric titration confirmed this observation which shows that, like complex bases and solid complex bases, salt complex bases initiate polymerization by the NH_2^- part of the aggregates.

CONCLUSIONS

From this work it appears that alkali inorganic salts can activate alkaliamides to give salt complex bases very reactive as initiators for anionic polymerizations. The low cost and the easy handling of these new reagents must be emphasized.

Moreover it must be noted that, like alkoxides, inorganic salts allow the modulation of the properties of the salt complex bases.

ACKNOWLEDGEMENTS

We thank Mrs Roques (Université de Nancy) for fruitful discussions, the referee for interesting suggestions concerning the manuscript and the SNPE for financial support.

REFERENCES

- 1 Caubère, P. and Coudert, G. Bull. Soc. Chim. Fr. 1969, 2234
- 2 Caubère, P. Acc. Chem. Res. 1974, 7, 301
- 3 Caubère, P. Top. Curr. Chem. 1978, 73, 50
- 4 Biehl, E. R., Nieh, E. and Hsu, K. C. J. Org. Chem. 1969, 34, 3595
- 5 Biehl, E. R., Hsu, K. C. and Nieh, E. J. Org. Chem. 1970, 35, 2454
- 6 Coudert, G., Ndebeka, G., Caubère, P., Raynal, S., Lecolier, S. and Boileau, S. J. Polym. Sci., Polym. Lett. Edn. 1978, 16, 413
- 7 Raynal, S., Lecolier, S., Ndebeka, G. and Caubère, P. J. Polym. Sci., Polym. Lett. Edn. 1980, 18, 13
- 8 Ndebeka, G., Caubère, P., Raynal, S. and Lecolier, S. Polymer 1981, 22, 347
- 9 Raynal, S., Lecolier, S., Ndebeka, G. and Caubère, P. Polymer 1981, 22, 356
- 10 Szwarc, M. 'Carbanions Living Polymers and Electron, Transfer Processes', Interscience, 1968
- 11 Hausser, C. R. and Dumnovant, W. R. Org. Syn. Coll. 1963, 4, 962